Coordinate Geometry

Q1. Find the distance between the points P(2, 5) and Q(7, -4)
(a) √45
(b) √71
(c) √86
(d) √98

Q2. Find the distance of the point A (5, -5) from the origin.
(a) 5√2
(b) 7√2
(c) 5√3
(d) 7√3

Q3. Find the area of ΔPQR whose vertices are P(10, -6), Q(3, 5) and R(-2, 6)
(a) 19 square units
(b) 24 square units
(c) 27 square units
(d) 32 square units

Q4. In which quadrant does the point (-5, 7) lie ?
(a) 1st quadrant
(b) 2nd quadrant
(c) 3rd quadrant
(d) 4th quadrant

Q5. The distance between the points A(b, 0) and B(0, a) is
(a) √a+b
(b) √a2-b2
(c) √a2+b2
(d) √a-b

Q6. Find the slope of the line whose equation is 3x + 4y - 10 = 0 is
(a) 3/4
(b) -3/4
(c) 5/7
(d) -5/7

Q7. If the distance of the point P(x, y) from A(a, 0) is a+x, then y2 = ?
(a) 4a/x
(b) 4ax
(c) 4a
(d) 4x/a

Q8. If the points A(2, 3), B(5, K) and C(6, 7) are collinear, then k = ?
(a) 3
(b) 5
(c) 6
(d) 8

Q9. A point C divides the join of A(1, 3) and B(2, 7) in the ratio 3:4. The co-ordinate of C are
(a) (5/7 , 11/7)
(b) (9/7 , 22/7)
(c) (8/7 , 27/7)
(d) (10/7 , 33/7)

Q10. The points A(1, 2), B(5, 4), C(3, 8) and D(-1, 6) taken in order are the vertices of
(a) a rhombus
(b) a rectangle
(c) a square
(d) None of these


1 2