Coordinate Geometry
Q1. Find the distance between the points P(2, 5) and Q(7, -4)
(a) √45
(b) √71
(c) √86
(d) √98
Answer: (c) √86
PQ = √(7-2)2 + {5 - (-4)}2
= √25 + 81
= √86 units
Q2. Find the distance of the point A (5, -5) from the origin.
(a) 5√2
(b) 7√2
(c) 5√3
(d) 7√3
Answer: (a) 5√2
OA = √(5-0)2 + (-5 - 0}2
= √25 + 25
= √50
= 5√2 units
Q3. Find the area of ΔPQR whose vertices are P(10, -6), Q(3, 5) and R(-2, 6)
(a) 19 square units
(b) 24 square units
(c) 27 square units
(d) 32 square units
Answer: (b) 24 square units
Here x1 = 10, x2 = 3, x3 = -2
y1 = -6, y2 = 5, y3 = 6
∴ Δ = ½ {x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2)}
= ½ {10(5-6) + 3(6+6) - 2(-6-5)}
= ½ {-10 + 36 + 22}
= ½ X 48 = 24 sqaure units
Q4. In which quadrant does the point (-5, 7) lie ?
(a) 1st quadrant
(b) 2nd quadrant
(c) 3rd quadrant
(d) 4th quadrant
Answer: (b) 2nd quadrant
Q5. The distance between the points A(b, 0) and B(0, a) is
(a) √a+b
(b) √a2-b2
(c) √a2+b2
(d) √a-b
Answer: (c) √a2+b2
AB = √(0-b)2 + (a-0)2
= √b2 + a2
= √a2 + b2
Q6. Find the slope of the line whose equation is 3x + 4y - 10 = 0 is
(a) 3/4
(b) -3/4
(c) 5/7
(d) -5/7
Answer: (b) -3/4
3x + 4y - 10 = 0
⇒ 4y = -3x + 10
⇒ y = (-3/4)x + 10/4
∴ slope = -3/4
Q7. If the distance of the point P(x, y) from A(a, 0) is a+x, then y2 = ?
(a) 4a/x
(b) 4ax
(c) 4a
(d) 4x/a
Answer: (b) 4ax
We have
AP = √(x-a)2 + (y-0)2
⇒ a+x = √(x-a)2 + y2
⇒ (a+x)2 = (x-a)2 + y2
⇒ a2 + 2ax + x2 = x2 - 2ax + a2 + y2
⇒ 4ax = y2
⇒ y2 = 4ax
Q8. If the points A(2, 3), B(5, K) and C(6, 7) are collinear, then k = ?
(a) 3
(b) 5
(c) 6
(d) 8
Answer: (c) 6
Here x1 = 2, x2 = 5, x3 = 6
y1 = 3, y2 = k, y3 = 7
A/Q Δ = 0
⇒ ½ {x1(y2-y3) + x2(y3-y1) + x3(y1-y2)} = 0
⇒ 2(k-7) + 5(7-3) + 6(3-k) = 0
⇒ 2k - 14 + 20 + 18 -6k = 0
⇒ -4k + 24 = 0
⇒ -4k = -24
⇒ k = 6
Q9. A point C divides the join of A(1, 3) and B(2, 7) in the ratio 3:4. The co-ordinate of C are
(a) (5/7 , 11/7)
(b) (9/7 , 22/7)
(c) (8/7 , 27/7)
(d) (10/7 , 33/7)
Answer: (d) (10/7 , 33/7)
Co-ordinates of C are
( | 3 X 2 + 4 X 1 | , | 3 X 7 + 4 X 3 | ) |
3 + 4 | 3 + 4 |
i.e ( | 6 + 4 | , | 21 + 12 | ) |
7 | 7 |
i.e ( | 10 | , | 33 | ) |
7 | 7 |
Q10. The points A(1, 2), B(5, 4), C(3, 8) and D(-1, 6) taken in order are the vertices of
(a) a rhombus
(b) a rectangle
(c) a square
(d) None of these
Answer: (c) a square
AB = √(5-1)2 + (4-2)2
= √16 + 4 = √20
BC = √(3-5)2 + (8-4)2
= √4 + 16 = √20
CD = √(-1 -3)2 + (6-8)2
= √16 + 4 = √20
DA = √(1+1)2 + (2-6)2
= √4 + 16 = √20
Diag AC = √(3-1)2 + (8-2)2
= √4 + 36 = √40
BD = √(-1-5)2 + (6-4)2
= √36 + 4 = √40
∴ ABCD is a square
Practice Test Exam